简单来说,CNN的目的是以一定的模型对事物进行特征提取,而后根据特征对该事物进行分类、识别、预测或决策等。在这个过程里,最重要的步骤在于特征提取,即如何提取到能最大程度区分事物的特征。如果提取的特征无法将不同的事物进行划分,那么该特征提取步骤将毫无意义。而实现这个伟大的模型的,是对CNN进行迭代训练。
卷积神经网络的结构有很多种,但是其基本架构是相似的,拿LeNet-5为例来介绍,如下图,它包含三个主要的层——卷积层( convolutional layer)、池化层( pooling layer)、全连接层( fully-connected layer)。其中,卷积层,用来学习输入数据的特征表征。卷积层由很多的卷积核(convolutional kernel)组成,卷积核用来计算不同的feature map;