编译|依婷
编辑|Panken
前言
本篇接着
2025年04月01日
使用 OpenCV 函数 cv::filter2D 执行一些拉普拉斯滤波以进行图像锐化
使用 OpenCV 函数 cv::distanceTransform 以获得二值图像的派生(derived)表示,其中每个像素的值被替换为其到最近背景像素的距离
使用 OpenCV 函数 cv::watershed 将图像中的对象与背景隔离
2025年04月01日
Python程序开发之简单小程序实例
(9)利用Canvas绘制图形和文字
一、项目功能
利用Tkinter组件中的Canvas绘制图形和文字。
二、项目分析
要在窗体中绘制图形和文字,需先导入Tkinter组件,然后用Canvas完成绘制。
2025年04月01日
这篇文章的目的是介绍关于利用自动编码器实现图像降噪的内容。
在神经网络世界中,对图像数据进行建模需要特殊的方法。其中最著名的是卷积神经网络(CNN或ConvNet)或称为卷积自编码器。并非所有的读者都了解图像数据,那么我先简要介绍图像数据(如果你对这方面已经很清楚了,可以跳过)。然后,我会介绍标准神经网络。这个标准神经网络用于图像数据,比较简单。这解释了处理图像数据时为什么首选的是卷积自编码器。最重要的是,我将演示卷积自编码器如何减少图像噪声。这篇文章将用上Keras模块和MNIST数据。Keras用Python编写,并且能够在TensorFlow上运行,是高级的神经网络API。
2025年04月01日
2014年,GoogLeNet获得了第一名、VGG获得了第二名。
GoogLeNet是一种基于 Inception 架构的卷积神经网络。它利用 Inception
模块,允许网络在每个块中的多个卷积滤波器大小之间进行选择。Inception 网络将这些模块堆叠在一起,偶尔会使用最大池化层,步幅为2,以将网格的分辨率减半。
inception结构涉及了大量的数学推导和原理
2025年04月01日
作者 | 蒋宝尚
编辑 | 贾伟
躺尸接近三个月的OpenAI博客终于有了更新,这次它为AI研究者带来的作品是“OpenAI Microscope”,中文译名OpenAI 显微镜。
意为可以像实验室中的显微镜一样工作,帮助AI研究人员更好地理解神经网络的结构和特征。
博客地址:
https://openai.com/blog/microscope/
说到底,这个显微镜更像是一个神经元可视化库,里面包含了历史上重要且普遍研究的计算机视觉模型,如2012年ImageNet挑战赛冠军AlexNet,2014年的ImageNet冠军GoogleNet(又名Inception V1)和ResNet v2。