本文将从功能原理、技术细节到实际作用,系统解析这些 “幕后模块”:为什么 FFN 能让注意力的输出更 “有用”?残差连接如何让模型 “越 deep 越聪明”?归一化又为何能让训练 “稳如泰山”?
如果把 Transformer 比作一台精密的机器,那么注意力机制是它的 “核心引擎”,而前馈神经网络(FFN)、残差连接(Residual Connection)和归一化(Normalization)就是让引擎高效运转的 “内部齿轮”。这些模块看似简单,却解决了深度学习的两大核心难题 —— 特征提取能力不足和训练不稳定性,是大语言模型能 “理解语言、生成文本” 的关键支撑。